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the simplified model is indeed only an approximation.
If it were exact, larger pyrolusite concentrations p than
that of pattern D(p = 0-25) would yield patterns con-
verging to that of an ab’c-lattice (for which p = 0-50),
with the shifted lines gradually sharpening to normal
powder lines. Now the continuous series of y-MnO,
patterns, which is generally supposed to exist, does
nothing of the sort. Instead it shows an increasing
deterioration, down to stages such as Fig.1C. Accord-
ing to Delano (1950), a further continuous series exists
between that stage and pyrolusite.

By heat treatment of »-MnO,, Brenet et al. (1957)
have indeed obtained a continuous transition from a
pattern not unlike our Fig. 1D, to something close
to the pyrolusite pattern. Comparison of the latter
stages in this series with pure pyrolusite again shows
anomalous shift and broadening of certain lines.
Rather than attaching specific significance to one of
those (as Brenet et al. (1957) do to (110), d = 3-11 &),
we find that these phenomena are in qualitative agree-
ment with another simplification of our model, valid
for p near unity (viz., pyrolusite with & stacking
faults, corresponding to isolated ramsdellite layers).*

Recently, an explanation in terms of atomic para-
meters has been given by Kedesdy et al. (1957) for
the relation between y-MnO, and ramsdellite. How-
ever, this hypothesis cannot possibly account for the
anomalous diffraction phenomena shown by -MnO,.

* In this connection a curious detail of many pyrolusite
patterns may be mentioned. Fig. 1 4, a pattern of a synthetic
sample obtained by treating y-MnO, at 160° with concentrated
HNO,, is shown here to represent & pure, well-crystallized
B-MnO,. Fig. 1B is a pattern of a mineral sample with pre-
ferred orientation, the (hk0O) reflections being enhanced on B’
and suppressed on B”. Since B’ was obtained by vertical,
and B’ by horizontal flow of the specimen paste, this sample
obviously has the fibrous habitus||¢c meutioned by Vaux &
Bennet (1937).

The broadening shown by several lines in Fig. 1 B (notably
(200), (210), (310) and (400)) cannot, however, be explained
as particle-size broadening. The latter would make (400)
hardly broader than (200), whereas it is actually twice as

345

Probably a similar argument holds for their interpreta-
tion of what they call p-MnO,, since neither the defini-
tion of that phase nor the reasons for distinguishing
it from y-MnO, have been made clear.

Finally, the author wishes to express his gratitude
to Prof. Brenet (Institut de Chimie, Université de
Strasbourg, France) for providing helpful samples and
documentation; to Mrs van Damme-van Weele
(Central Lab. T.N.O., Delft) for stimulating discus-
sions; and to the Governing Board of the T.P.D.
for their permission to publish.
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broad. It turns out that the line width is equal to the distance
between doublet components which would be obtained from
an orthorhombic lattice slightly departing from the alleged
tetragonal lattice of pyrolusite. Indeed the broadened lines
have the profile of a hardly resolved doublet.

Such patterns do not fit in tho series found by Brenet ¢t al.
(1957), nor can they be interpreted in terms of the above model
for y-MnO,. On the other hand, they appear to shed new light
on the much-debated existence of an orthorhombic, pseudo-
tetragonal form of pyrolusite (Vaux & Bennett (1937);
Strunz (1943)).
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Group velocity and energy (or particle) flow density of waves in a periodic medium. By
E. H. WAGNER, Fritz—Haber-Institut der Mazx—Planck-Gesellschaft, Berlin—Dahlem, Germany

(Recetved 16 December 1958)

For the propagation of electromagnetic waves (X-rays
or light) in crystals, the direction of the averaged Poynt-
ing vector is normal to the surface of dispersion in the

point representing the wave field. This has been pointed

out by N.Kato (1958) recently, and the same relation
holds for the current density vector of electron waves.
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P. P. Ewald (1958) in a subsequent paper uses the group
velocity vector, which is normal to the dispersion surface
too, for studying the propagation of energy through
crystals. Both authors considered monochromatic wave
packets only (explicitly by Ewald, tacitly assumed by
Kato). The results quoted, however, are more definite
and more familiar, if one considers polychromatic wave
packets right from the beginning.

For an electron moving in a periodic potential,
R. Peierls (1929) has shown the validity of the de Broglie
relation between phase and group velocity. If one uses
non-normalized Bloch functions p(x, k) for the electron
and takes into account the Hermitian property of the
momentum operator, the result of Peierls reads

(1/m)py*y =S = (1/h)yp*y gradp E(K) , (1)

P expectation value of momentum, § probability current
density, m electron mass, # Planck’s constant; the bar
denotes averaging over one unit cell. E(k), the energy
of the electron, is a manyvalued (one value in each energy
band) periodic function of the electron wave vector k

E(k+by) = E(k}, (2)

gradk denotes differentiation with respect to k. For
electron diffraction problems, all electrons being in-
dependent and having the same energy E,, the equation

E(k) = E, = const. (3)

describes the surface of dispersion, a two-dimensional
surface in three-dimensional k-space given in implicit
form. This statement is immediately evident, because
we calculate E(K) (for problems of electron states in
crystals) from the same determinantal equation, from
which we calculate the surface of dispersion (by solving
it for one component of k for example). As a consequence
of equation (2), the dispersion surface is periodic in
k-space too, it has a finite number of real branches.
Now, E(k)/h gives the frequency of the electron waves,
the vector grady E(k)/k, being normal to the dispersion
surface, is the group velocity vector. Equation (1), due
to Peierls (1929), not only contains the result quoted by
N. Kato for electron waves, but it gives the link between
the papers of N. Kato and P. P. Ewald.*

[Actually, there is a slight difference in the definition
(2) of the surface of dispersion and Ewald’s original
definition : The k-vectors describing the dispersion surface
in our definition have to be drawn from the origin of
k-space to the dispersion surface; this treatment is due
to E. Fues (1939), the surface was called by him ‘Aus-
breitungsfliache’, i.e., the dispersion surface defined by
(2) differs from Ewald’s by an inversion at the origin of
k-space.]

A relation completely analogous to equation (1) holds
for electromagnetic waves, if no absorption and no total
reflection take place; i.e. the wave vector k and the

* With N. Kato’s (1958) method, H. Niehrs (Phys. Ver-
handl. 7, 212, 1956) has given a general proof (for an ar-
bitrary number of reflected beams) that the current density
vector of electron waves is normal to the dispersion surface.

SHORT COMMUNICATIONS

dielectric tensor € being assumed to be real, &(x, ») is a
periodic function of space with the periodicity of the
crystal lattice, which may depend on the frequency as
well. Particularly, there is no assumption involved
concerning the magnitude of the polarizability e—1 as
in the dynamical theory of X-rays. A straightforward
calculation, applying Peierls’ method to Maxwell’s equa-
tions, gives the Poynting vector corresponding to one
single branch of the dispersion surface*

S = Wgradk v(k) . (4)

The double bar denotes the average over time and one
unit cell of the crystal, the dispersion surface is given
by the frequency function

v(K) = v, = const. , (5)

vy is the frequency of the incident wave. The definitions
of S and W are

S = (¢/167)[E* xH+E x H*] l

=
I

(l/lﬁn)[E*-c%(vs)-E—i—H*-H] 6)

Il

(1/167;)[1:*-(25“%:)-13}

E(x, k) and H(x, k) are time-independent, complex
solutions of the Maxwell equations (Bloch functions),
the single bar again denotes the average over one unit cell.
W is the averaged energy density of the electromagnetic
field, strictly speaking of an infinitely small wave packet
with mean wave vector k. W differs from the ‘naive’
expression by the term (1/16x)E*.»(0¢/ov).E as a conse-
quence of the assumed frequency dependence of the
dielectric tensor. For a special type dependence &(v) the
existence of this term has already been pointed out by
H. Peltzer (1951).

The interpretation of equation (4) is exactly the same
as in the electron wave case. Equation (4) modifies the

proportionality between S and W, well-known from
elementary optics, for the case of dispersion and for non-
parallel vectors of phase and group velocity.

The author sincerely thanks Prof. M. von Laue and
Dr H. Niehrs for many stimulating discussions.
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* Details will be published by the author in Z. Phys. The
calculations were done two years ago for an appendix to the
forthcoming 3rd edition of Prof. v. Laue’s book ‘Réntgen-
strahlinterferenzen’, which has been delayed in print. A
lecture on this topic was given in March, 1958, by the author
in Hamburg (unpublished).



