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t h e  s impli f ied model  is indeed on ly  an  app rox ima t ion .  
I f  i t  were exact ,  larger  pyro lus i t e  concen t ra t ions  p t h a n  
t h a t  of p a t t e r n  D(p  = 0.25) would yie ld  pa t t e rn s  con- 
verg ing  to  t h a t  of an  ab'c-lattice (for which  p = 0.50), 
w i th  the  sh i f ted  lines g radua l ly  sha rpen ing  to no rma l  
powder  lines. Now the  con t inuous  series of ~-Mn0~ 
pa t t e rn s ,  which  is genera l ly  supposed to exist ,  does 
n o t h i n g  of the  sort.  I n s t e a d  i t  shows an  increasing 
de te r io ra t ion ,  down  to  stages such as Fig. 1 C. Accord- 
ing to  Delano  (1950), a fu r the r  con t inuous  series exists  
be tween  t h a t  s tage and  pyrolus i te .  

B y  hea t  t r e a t m e n t  of y-Mn02,  Brene t  et al. (1957) 
h a v e  indeed  ob t a ined  a con t inuous  t r ans i t i on  f rom a 
p a t t e r n  no t  un l ike  our  Fig. 1 D, to  someth ing  close 
to  the  pyro lus i t e  pa t t e rn .  Compar i son  of the  l a t t e r  
stages in th is  series wi th  pure  pyro lus i t e  aga in  shows 
anoma lous  shif t  and  b roaden ing  of cer ta in  lines. 
R a t h e r  t h a n  a t t a c h i n g  specific s ignif icance to one of 
those  (as B rene t  et al. (1957) do to (110), d = 3.11 A), 
we f ind  t h a t  these  p h e n o m e n a  are in qua l i t a t ive  agree- 
m e n t  wi th  a n o t h e r  s impl i f ica t ion  of our  model ,  va l id  
for p nea r  u n i t y  (viz., pyro lus i t e  w i th  b' s tack ing  
faul ts ,  cor responding  to  i so la ted  ramsde l l i t e  layers) .* 

Recen t ly ,  an  e x p l a n a t i o n  in t e rms  of a tomic  para-  
meters  has  been g iven  by  K e d e s d y  et al. (1957) for 
the  r e l a t ion  be tween  y-Mn02 and  ramsdel l i te .  How- 
ever,  th is  hypo thes i s  c anno t  poss ibly  accoun t  for  t he  
anoma lous  d i f f rac t ion  p h e n o m e n a  shown by  y-Mn02.  

* In this connection a curious detail of many pyrolusite 
patterns may be mentioned. Fig. 1 A, a pattern of a synthetic 
sample obtained by treating y-MnO 2 at 160 ° with concentrated 
HNOa, is shown here to represent a pure, well-crystallized 
~-MnO 2. Fig. 1 B is a pattern of a mineral sample with pre- 
ferred orientation, the (hlcO) reflections being enhanced on B" 
and suppressed on B". Since B' was obtained by vertical, 
and B" by horizontal flow of the specimen paste, this sample 
obviously has the fibrous habitus[[c mentioned by Vaux & 
Bennet (1937). 

The broadening shown by several lines in Fig. 1 B (notably 
(200), (210), (310) and (400)) cannot, however, be explained 
as particle-size broadening. The latter would make (400) 
hardly broader than (200), whereas it is actually twice as 

P r o b a b l y  a s imilar  a r g u m e n t  holds  for the i r  i n t e rp re t a -  
t ion  of w h a t  t h e y  call @-Mn02, since ne i t he r  the  defini-  
t ion  of t h a t  phase  nor  the  reasons for d i s t ingu i sh ing  
i t  f rom y-Mn02 h a v e  been  m a d e  clear. 

F ina l ly ,  t he  a u t h o r  wishes to  express his g r a t i t u d e  
to  Prof.  B rene t  ( I n s t i t u t  de Chimie,  Univers i td  de 
St rasbourg ,  France)  for p rov id ing  helpful  samples  and  
d o c u m e n t a t i o n ;  to  Mrs v a n  D a m m e - v a n  Weele  
(Central  Lab.  T .N .  0 . ,  Delft)  for  s t imu la t i ng  discus- 
sions;  and  to  the  Govern ing  Boa rd  of the  T . P . D .  
for  the i r  permiss ion  to  publ ish .  
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broad. I t  turns out that the line width is equal to the distance 
between doublet components which would be obtained from 
an orthorhombie lattice slightly departing from the alleged 
tetragonal lattice of pyrolusite. Indeed the broadened lines 
have the profile of a hardly resolved doublet. 

Such patterns do not fit in the sories found by Brenet et al. 
(1957), nor can they be interpreted in terms of the above model 
for F-MnO 2. On the other hand, they appear to shed new light 
on the much-debated existence of an orthorhombic, pseudo- 
tetragonal form of pyrolusite (Vaux & Bennett (1937); 
Strunz (1943)). 
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For  the propagat ion  of electromagnetic waves (X-rays point  representing the wave field. This has been pointed 
or light) in crystals, the direction of the averaged Poynt -  out  by N. Kato  (1958) recently,  and  the same relat ion 
ing vector is normal  to the surface of dispersion in the holds for the current  densi ty vector  of electron waves. 
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P. P. Ewald  (1958) in a subsequent  paper uses the  group 
velocity vector, which is normal  to the dispersion surface 
too, for s tudying the  propagat ion of energy through 
crystals. Bo th  authors considered monochromat ic  wave 
packets  only (explicitly by Ewald,  taci t ly  assumed by 
Kate) .  The results quoted,  however,  are more definite 
and more familiar, if one considers polychromatic  wave 
packets r ight  from the beginning. 

For  an electron moving in a periodic potential ,  
R. Peierls (1929) has shown the  val idi ty  of the de Broglie 
relation between phase and  group velocity. If  one uses 
non-normal ized Bloch functions ~(x, k) for the  electron 
and takes into account the  Hermi t ian  proper ty  of the  
m o m e n t u m  operator, the result of Peierls reads 

(1/m)p~*~ -- ~ = (1/h)~*~ g r a d k E ( k ) ,  (1) 

p expectat ion value of momen tum,  ~ probabil i ty  current  
density,  m electron mass, h Planck 's  constant ;  the  bar 
denotes  averaging over one uni t  cell. E(k) ,  the  energy 
of the  electron, is a manyva lued  (one value in each energy 
band) periodic function of the  electron wave vector k 

E ( k + b m )  = E ( k ) ,  (2) 

gradk denotes differentiat ion wi th  respect to k. For 
electron diffraction problems, all electrons being in- 
dependent  and  having the  same energy E 0, the equat ion 

E(k) = E 0 = const. (3) 

describes the  surface of dispersion, a two-dimensional  
surface in three-dimensional  k-space given in implicit  
form. This s ta tement  is immedia te ly  evident ,  because 
we calculate E(k)  (for problems of electron states in 
crystals) from the same de terminanta l  equation,  from 
which we calculate the  surface of dispersion (by solving 
it for one component  of k for example). As a consequence 
of equat ion (2), the dispersion surface is periodic in 
k-space too, i t  has a finite number  of real branches. 
Now, E(k)/h gives the  frequency of the  electron waves, 
the vector  gradk E(k)/h, being normal  to the dispersion 
surface, is the  group velocity vector. Equa t ion  (1), due 
to Peierls (1929), not  only contains the result quoted by 
N. Ka te  for electron waves, but  it gives the link between 
the  papers of N. Ka te  and P. P. Ewald.* 

[Actually, there is a slight difference in the definition 
(2) of the  surface of dispersion and Ewald 's  original 
definition : The k-vectors describing the dispersion surface 
in our definit ion have to be drawn from the origin of 
k-space to the  dispersion surface; this t r ea tmen t  is due 
to E. Fues (1939), the surface was called by  h im 'Aus- 
breitungsfl/~che', i.e., the  dispersion surface defined by 
(2) differs from Ewald 's  by an inversion at the origin of 
k-space.] 

A relation completely analogous to equat ion (1) holds 
for electromagnetic  waves, if no absorption and no total  
reflection take place; i.e. the wave vector k and the  

* With N. Kate's (1958) method, H. Niehrs (Phys. Ver- 
handl. 7, 212, 1956) has given a general proof (for an ar- 
bitrary number of reflected beams) that the current density 
vector of electron waves is normal to the dispersion surface. 

dielectric tensor E being assumed to be real, e(x, v) is a 
periodic function of space wi th  the  periodici ty of the  
crystal lattice, which may  depend on the  frequency as 
well. Particularly,  there is no assumption involved 
concerning the magni tude  of the  polarizabili ty e--1 as 
in the dynamical  theory of X-rays. A straightforward 
calculation, applying Peierls' me thod  to Maxwell 's equa- 
tions, gives the Poynt ing  vector corresponding to one 
single branch of the dispersion surface* 

S = W gradk v(k) . (4) 

The double bar denotes the  average over t ime and one 
uni t  cell of the crystal, the  dispersion surface is given 
by the  frequency function 

v(k) ---- v o ---- const. , (5) 

% is_ the fre__quency of the incident  wave. The definitions 
of S and W are 

S = ( c / 1 6 ~ t ) [ E * × H + E × H * ]  

[ 0 ] 
W = (1/16~r) E * . ~ v ( v E ) - E + H * . H  (6) 

= (1/16~)[E*. ( 2 t + v - ~ ) . E l  

E ( x , k )  and H ( x , k )  are t ime- independent ,  complex 
solutions of the Maxwell equations (Bloch functions), 
the single bar again denotes the  average over one uni t  cell. 
W is the averaged energy densi ty of the  electromagnetic  
field, strictly speaking of an infinitely small wave packet  

wi th  mean wave vector k. W differs from the 'naive'  
expression by the te rm (1/16zt)E*.v(~e/~v).E as a conse- 
quence of the assumed frequency dependence of the  
dielectric tensor. For a special type dependence e(v) the  
existence of this te rm has already been pointed out by 
H. Peltzer (1951). 

The interpreta t ion of equat ion (4) is exactly the  same 
as in the electron wave case. Equat ion  (4) modifies the  

proport ional i ty  between S and W, well-known from 
elementary  optics, for the case of dispersion and for non- 
parallel vectors of phase and group velocity. 

The author  sincerely thanks  Prof. M. yon Laue and 
Dr H. Niehrs for m a n y  st imulat ing discussions. 
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* Details will be published by the author in Z. Phys. The 
calculations were done two years ago for an appendix to the 
forthcoming 3rd edition of Prof. v. Laue's book 'R6ntgen- 
strahlinterferenzen', which has been delayed in print. A 
lecture on this topic was given in March, 1958, by the author 
in Hamburg (unpublished). 


